Take an x-axis and an y-axis (orthonormal) and let O be the origin. A circle centered in O and with radius = 1is known as trigonometric circle or unit circle.
Đang xem: Trigonometry calculator
If P is a point from the circle and A is the angle between PO and x axis then:the x-coordinate of P is called the cosine of A. We write cos(A) or cos A;the y-coordinate of P is called the sine of A. We write sin(A) or sin A;the number sin(A)/cos(A) is called the tangent of A. We write tan(A) or tan A;the number cos(A)/sin(A) is called the cotangent of A. We write cot(A) or cot A.
The sine function
sin : R -> RAll trigonometric functions are periodic. The period of sin is 2$pi$.The range of the function is <-1,1>.
Xem thêm: Giải Ngố Pga Là Gì ? Phân Loại Pga? Chi Phí Pga Có Cao Không?
The tangent function
tan : R -> RThe range of the function is R.Now, the period is $pi$ and the function is undefined at x = ($pi$/2) + k$pi$, k=0,1,2,…The graph of the tangent function on the interval 0 – $pi$
Animated graph(open in a new window):The graph of the tangent function on the interval 0 – 2$pi$
The cotangent function
cot : R -> RThe range of the function is R.The period is $pi$ and that the function is undefined at x = k$pi$, k=0,1,2,…
Xem thêm: Làm Thơ Lục Bát – Cách Đơn Giản, Thú Vị Để Tặng Bạn Bè, Người Thân
The values of sin, cos, tan, cot at the angles of 0°, 30°, 60°, 90°, 120°,135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°
$A^o$$0^o$$30^o$$45^o$$60^o$$90^o$$120^o$$135^o$$150^o$$180^o$$210^o$$225^o$$240^o$$270^o$$300^o$$315^o$$330^o$$360^o$$A rad$ | $0$ | $frac{pi}{6}$ | $frac{pi}{4}$ | $frac{pi}{3}$ | $frac{pi}{2}$ | $frac{2pi}{3}$ | $frac{3pi}{4}$ | $frac{5pi}{6}$ | $pi$ | $frac{7pi}{6}$ | $frac{5pi}{4}$ | $frac{4pi}{3}$ | $frac{3pi}{2}$ | $frac{5pi}{3}$ | $frac{7pi}{4}$ | $frac{11pi}{6}$ | $2pi$ | ||||||||||||||||||
$sin A$ | $0$ | $frac{1}{2}$ | $frac{sqrt{2}}{2}$ | $frac{sqrt{3}}{2}$ | $1$ | $frac{sqrt{3}}{2}$ | $frac{sqrt{2}}{2}$ | $frac{1}{2}$ | $0$ | $-frac{1}{2}$ | $-frac{sqrt{2}}{2}$ | $-frac{sqrt{3}}{2}$ | $-1$ | $-frac{sqrt{3}}{2}$ | $-frac{sqrt{2}}{2}$ | $-frac{1}{2}$ | $0$ | ||||||||||||||||||
$cos A$ | $1$ | $frac{sqrt{3}}{2}$ | $frac{sqrt{2}}{2}$ | $frac{1}{2}$ | $0$ | $-frac{1}{2}$ | $-frac{sqrt{2}}{2}$ | $-frac{sqrt{3}}{2}$ | $-1$ | $-frac{sqrt{3}}{2}$ | $-frac{sqrt{2}}{2}$ | $-frac{1}{2}$ | $0$ | $frac{1}{2}$ | $frac{sqrt{2}}{2}$ | $frac{sqrt{3}}{2}$ | $1$ | ||||||||||||||||||
$ an A$ | $0$ | $frac{sqrt{3}}{3}$ | $1$ | $sqrt{3}$ | $-$ | $-sqrt{3}$ | $-1$ | $-frac{sqrt{3}}{3}$ | $0$ | $frac{sqrt{3}}{3}$ | $1$ | $sqrt{3}$ | $-$ | $-sqrt{3}$ | $-1$ | $-frac{sqrt{3}}{3}$ | $0$ | $cot A$ | $-$ | $sqrt{3}$ | $1$ | $frac{sqrt{3}}{3}$ | $0$ | $-frac{sqrt{3}}{3}$ | $-1$ | $-sqrt{3}$ | $-$ | $sqrt{3}$ | $1$ | $frac{sqrt{3}}{3}$ | $0$ | $-frac{sqrt{3}}{3}$ | $-1$ | $-sqrt{3}$ | $-$ |
The easiest way to remember the basic values of sin and cosat the angles of 0°, 30°, 60°, 90°:sin(<0, 30, 45, 60, 90>) = cos(<90, 60, 45, 30, 0>) = sqrt(<0, 1, 2, 3, 4>/4)
Basic Trigonometric Identities
For every angle A corresponds exactly one point P(cos(A),sin(A)) on the unit circle.
cos2(A) + sin2(A) = 1
If A + B = 180° then:
sin(A) = sin(B)cos(A) = -cos(B)tan(A) = -tan(B)cot(A) = -cot(B)
If A + B = 90° then:
sin(A) = cos(B)cos(A) = sin(B)tan(A) = cot(B)cot(A) = tan(B)
$-A$ | $90^circ – A$ | $90^circ + A$ | $180^circ – A$ | |
$ extrm{ sin }$ | $- extrm{ sin }A$ | $ extrm{ cos }A$ | $ extrm{ cos }A$ | $ extrm{ sin }A$ |
$ extrm{ cos }$ | $ extrm{ cos }A$ | $ extrm{ sin }A$ | $- extrm{ sin}A$ | $- extrm{ cos }A$ |
$ extrm{ tan }$ | $- extrm{ tan }A$ | $ extrm{ cot }A$ | $- extrm{ cot }A$ | $- extrm{ tan } A$ |
$ extrm{ cot }$ | $- extrm{ cot }A$ | $ extrm{ tan }A$ | $- extrm{ tan }A$ | $- extrm{ cot }A$ |
Half-Angle Formulas
$sinfrac{A}{2}=pmsqrt{frac{1-cos A}{2}}$+ if $frac{A}{2}$ lies in quadrant | or ||- if $frac{A}{2}$ lies in quadrant ||| or |V
$cosfrac{A}{2}=pmsqrt{frac{1+cos A}{2}}$+ if $frac{A}{2}$ lies in quadrant | or |V – if $frac{A}{2}$ lies in quadrant || or |||
$ anfrac{A}{2}=pmsqrt{frac{1-cos A}{1+cos A}}$+ if $frac{A}{2}$ lies in quadrant | or |||- if $frac{A}{2}$ lies in quadrant || or |V
$cotfrac{A}{2}=pmsqrt{frac{1+cos A}{1-cos A}}$+ if $frac{A}{2}$ lies in quadrant | or |||- if $frac{A}{2}$ lies in quadrant || or |V
$ anfrac{A}{2} = frac{sin A}{1+cos A} = frac{1-cos A}{sin A}=csc A-cot A$
$cotfrac{A}{2} = frac{sin A}{1-cos A} = frac{1+cos A}{sin A}=csc A+cot A$
Double and Triple Angle Formulas
$sin(2A) = 2sin(A)cdot cos(A)$
$cos(2A) = cos^2(A) – sin^2(A) = 2cos^2(A) – 1 = 1 – 2sin^2(A)$
$ an(2A) = frac{2 an(A)}{1- an^2(A)}$
$cos(2A) = frac{1 – an^2(A)}{1 + an^2(A)}$
$sin(2A) = frac{2 an(A)}{1 + an^2(A)}$
$sin3A = 3sin A – 4 sin^3A$
$cos3A = 4cos^3A – 3 cos A$
$ an3A=frac{3 an A – an^3A}{1-3 an^2A}$
$cot3A=frac{cot^3A-3cot A}{3cot^2A-1}$
$sin4A = 4cos^3Acdot sin A – 4cos Acdot sin^3A$
$cos4A = cos^4A – 6cos^2Acdot sin^2A + sin^4A$
$ an4A=frac{4 an A – 4 an^3A}{1-6 an^2A+ an^4A}$
$cot4A=frac{cot^4A-6cot^2A+1}{4cot^3A-4cot A}$
Power-Reducing Formulas
$sin^2(A)=frac{1 – cos(2A)}{2}$
$sin^3(A)=frac{3sin A – sin(3A)}{4}$
$sin^4(A)=frac{cos(4A) – 4cos(2A) + 3}{8}$
$cos^2(A) = frac{1 + cos(2A)}{2}$
$cos^3(A)=frac{3cos A + cos(3A)}{4}$
$cos^4(A)=frac{4cos(2A) + cos(4A) + 3}{8}$
Sum and Difference of Angles
$sin(A + B) = sin(A)cdot cos(B) + cos(A)cdot sin(B)$
$sin(A – B) = sin(A)cdot cos(B) – cos(A)cdot sin(B)$
$cos(A + B) = cos(A)cdot cos(B) – sin(A)cdot sin(B)$
$cos(A – B) = cos(A)cdot cos(B) + sin(A)cdot sin(B)$
$ an(A + B) = frac{sin(A + B)}{cos(A + B)}=frac{sin(A)cdot cos(B) + cos(A)cdot sin(B)}{cos(A)cdot cos(B) – sin(A)cdot sin(B)}$
$ an(A + B) = frac{ an(A) + an(B)}{1 – an(A)cdot an(B)}$
$cot(A pm B) = frac{cot(B)cot(A)mp 1}{cot(B)pm cot(A)}=frac{1mp an(A) an(B)}{ an(A)pm an(B)}$
$sin(A + B + C) = sin Acdotcos Bcdotcos C + cos Acdotsin Bcdotcos C + cos Acdotcos Bcdotsin C – sin Acdotsin Bcdotsin C$
$cos(A + B + C) = cos Acdotcos Bcdotcos C – sin Acdotsin Bcdotcos C – sin Acdotcos Bcdotsin C $$- sin Acdotcos B cdotsin C – cos A cdot sin Bcdot sin C$
$ an(A + B + C) = frac{ an A + an B + an C – an Acdot an B cdot an C}{1 – an A cdot an B – an Bcdot an C – an Acdot an C}$
Sum and Difference of Trigonometric Functions
$ extrm{ sin } A + extrm{ sin }B = 2 extrm{ sin }frac{A + B}{2} extrm{ cos }frac{A – B}{2}$
$ extrm{ sin } A – extrm{ sin }B = 2 extrm{ sin }frac{A – B}{2} extrm{ cos }frac{A + B}{2}$
$ extrm{ cos } A + extrm{ cos }B = 2 extrm{ cos }frac{A + B}{2} extrm{ cos }frac{A – B}{2}$
$ extrm{ cos } A – extrm{ cos }B = -2 extrm{ sin }frac{A + B}{2} extrm{ sin }frac{A – B}{2}$
$ an A + an B = frac{sin(A+B)}{cos A cdotcos B}$
$ an A – an B = frac{sin(A-B)}{cos Acdotcos B}$
$cot A + cot B = frac{sin(A+B)}{sin Acdotsin B}$
$cot A – cot B = frac{-sin(A-B)}{sin Acdotsin B}$
Multiplication of 2 Trigonometric Functions
$ extrm{ sin }A extrm{ sin }B = frac{1}{2} ( extrm{ cos }(A – B) – extrm{ cos }(A + B))$
$ extrm{ cos }A extrm{ cos }B = frac{1}{2} ( extrm{ cos }(A – B) + extrm{ cos }(A + B))$
$ extrm{ sin }A extrm{ cos }B = frac{1}{2} ( extrm{ sin }(A + B) + extrm{ sin }(A – B))$
$ an A cdot an B = frac{ an A+ an B}{cot A+cot B}=-frac{ an A- an B}{cot A-cot B}$
$cot A cdot cot B = frac{cot A+cot B}{ an A+ an B}$
$ an A cdot cot B = frac{ an A+cot B}{cot A+ an B}$
$sin Asin Bsin C = frac{1}{4}ig(sin(A+B-C)+sin(B+C-A)+sin(C+A-B)-sin(A+B+C)ig)$
$cos Acos Bcos C = frac{1}{4}ig(cos(A+B-C)+cos(B+C-A)+cos(C+A-B)+cos(A+B+C)ig)$
$sin Asin Bcos C = frac{1}{4}ig(-cos(A+B-C)+cos(B+C-A)+cos(C+A-B)-cos(A+B+C)ig)$
$sin Acos Bcos C = frac{1}{4}ig(sin(A+B-C)-sin(B+C-A)+sin(C+A-B)+sin(A+B+C)ig)$
Tangent half-angle substitution
$sin A = frac{2 anfrac{A}{2}}{1+ an^2frac{A}{2}}$
$cos A = frac{1- an^2frac{A}{2}}{1+ an^2frac{A}{2}}$
$ an A = frac{2 anfrac{A}{2}}{1- an^2frac{A}{2}}$
$cot A = frac{1- an^2frac{A}{2}}{2 anfrac{A}{2}}$
Other Trigonometric Formulas
$1pmsin A=2sin^2ig(frac{pi}{4}pm frac{A}{2}ig)=2cos^2ig(frac{pi}{4}mp frac{A}{2}ig)$
$frac{1-sin A}{1+sin A} = an^2(frac{pi}{4}-frac{A}{2})$
$frac{1-cos A}{1+cos A} = an^2frac{A}{2}$
$frac{1- an A}{1+ an A} = an(frac{pi}{4}-A)$
$frac{1+ an A}{1- an A} = an(frac{pi}{4}+A)$
$frac{cot A + 1}{cot A – 1} = cot(frac{pi}{4}-A)$
$ an A + cot A = frac{2}{sin2A}$
$ an A – cot A = -2cot2A$
Other resources
Trigonometry in detailsTrigonometry forumPracticeTrigonometry in geometryTrigonometric functions plotter